45 research outputs found

    Active School Transport among Children from Canada, Colombia, Finland, South Africa, and the United States: A Tale of Two Journeys

    Get PDF
    Walking and biking to school represent a source of regular daily physical activity (PA). The objectives of this paper are to determine the associations of distance to school, crime safety, and socioeconomic variables with active school transport (AST) among children from five culturally and socioeconomically different country sites and to describe the main policies related to AST in those country sites. The analytical sample included 2845 children aged 9–11 years from the International Study of Childhood Obesity, Lifestyle and the Environment. Multilevel generalized linear mixed models were used to estimate the associations between distance, safety and socioeconomic variables, and the odds of engaging in AST. Greater distance to school and vehicle ownership were associated with a lower likelihood of engaging in AST in sites in upper-middle- and high-income countries. Crime perception was negatively associated to AST only in sites in high-income countries. Our results suggest that distance to school is a consistent correlate of AST in different contexts. Our findings regarding crime perception support a need vs. choice framework, indicating that AST may be the only commuting choice for many children from the study sites in upper-middle-income countries, despite the high perception of crime

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz

    Alimentos, superficies y COVID-19

    Get PDF
    El COVID-19 es una enfermedad infecciosa respiratoria causada por un coronavirus (SARS-CoV-2) que provoca afecciones que varían de moderadas a severas. Los datos disponibles indican que la transmisión mås frecuente del SARS-CoV-2 ocurre a través de gotas respiratorias a corta distancia (<2 m). Existen ejemplos recientes documentados en los que parece haberse transmitido a través del aire a distancias superiores. De todos modos, estos eventos serían poco comunes e involucrarían la presencia de aerosoles infectivos en i) espacios cerrados, ii) con personas infectadas realizando actividades que aumentan la generación de partículas respiratorias, iii) en sitios mal ventilados, y iv) por períodos prolongados (30 min a varias horas). Una tercera forma de transmisión que se ha especulado es el contacto directo con personas infectadas o con un artículo o superficie contaminada. Esto incluye a cualquier objeto (alimento o no). De todos modos, de momento no existe evidencia científica fuerte que apoye esta forma de transmisión.Laboratorio de Investigación en Productos Agroindustriale

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed Îł-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their Îł-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the Îł-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the Îł-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the Îł-ray light curves with high-energy beam models

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∌6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous Îł-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the Îł-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Towards a novel model for studying the nutritional stage dynamics of the Colombian population by age and socioeconomic status

    No full text
    Low-and middle-income countries (LMICs) are experiencing a nutritional transition in which the burden of obesity tends to shift towards the lower-socioeconomic status (SES) group. We propose a system dynamics (SD) model for assessing the nutritional stage dynamics of the Colombian urban population by age and SES projected to 2030. This SD model captures the ageing population according to body mass index (BMI) categories and SES. In this model, the transference rates (TRs) between BMI categories by age and SES are estimated using a heuristic based on data obtained from national surveys. The simulation results show that the Colombian population, particularly those aged 20 to 39 years with a lower SES, is moving towards the overweight and obese categories. The TRs for overweight and obese categories in the lower SES group (the mean TR from not overweight to overweight = 0.0215 (per year) and mean TR from overweight to obese = 0.0098 (per year)) are increasing more rapidly than the those in the middle (the mean TR from not overweight to overweight = 0.0162 (per year) and mean TR from overweight to obese = 0.0065 (per year)) and higher SES groups (the mean TR from not overweight to overweight = 0.0166 and mean TR from overweight to obese = 0.0054 (per year)). Additionally, from 2005 to 2010, individuals aged 20 to 39 years had the highest TRs towards the overweight and obese categories (from 0.026 to 0.036 per year and from 0.0064 to 0.012 per year, respectively). The TRs also indicated that children aged 0 to 14 years are moving from the obese to overweight and from the overweight to not overweight categories. These TRs show that the Colombian population is experiencing an SES-related nutritional transition that is affecting the lower SES population. The proposed model could be implemented to assess the nutritional transitions experienced in other LMICs.Fundacion Centro de Estudios Interdisciplinarios Basicos y Aplicados - Fundacion CEIBA Universidad de Ibague Colciencias Fundacion CeiBA "Programa nacional de formacion doctoral Francisco Jose de Caldas" from Colciencias 511-2010 567-2012 Fondecyt 1150718 Centro para el Desarrollo de la Nanociencias y la Nanotecnologia (CEDENNA) Colciencias 750-2013 Research office at the Universidad de los Andes Universidad de Ibague 16-414-IN

    Estimated prevalence rates of BMI categories, by age group, under two scenarios.

    No full text
    <p>(A) Overweight prevalence rates under scenario 1; (B) obese prevalence rates under scenario 1; (C) overweight prevalence rates under scenario 2; (D) obese prevalence rates under scenario 2.</p
    corecore